
Platforms, Frameworks & Libraries » .NET Framework » How To

Adding a description to a .NET Windows

Service
By Andy Hopper

This article describes how to add a description for your .NET Framework Windows Service to

the Services administration tool.

C#, .NET, Win2K, WinXP, Windows,

Visual Studio, Dev

: 6 Feb 2002

: 6 Feb 2002

: 174,087

: 90 times

Posted

Updated

Views

Bookmarked

Download source files - 1 Kb

Introduction

Although the .NET Framework provides extremely robust Windows Service support through the classes

available under the System.ServiceProcess namespace, for some reason the ability to specify your the

description displayed in the Services control panel applet/MMC snap-in for your service was omitted.

There exists an attribute class named ServiceProcessDescription, but it actually specifies what the

Services MMC displays under the name column, and the Description column is left blank. This article will

walk you through a low-level hack for adding a description by adding it directly to your service's registry

key.

Most services keep their configuration information in the registry under the

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\ key. This is where the Service Control

Manager (SCM) looks to get a list of services installed on a machine, and the Services control panel uses

the SCM to list and modify the services. If you look under the key for a service, you'll see several

entries, but we're interested in one in particular: the Description value. This is a REG_SZ (string) value,

and this is where the SCM looks to get a service's description. We'll now take advantage of this arcane

knowledge in the code below (you may download the source by clicking here):

//This code should be inserted into your ProjectInstaller class' code

public override void Install(IDictionary stateServer)

{

 Microsoft.Win32.RegistryKey system,

 //HKEY_LOCAL_MACHINE\Services\CurrentControlSet
 currentControlSet,

 //...\Services
 services,

 //...\<Service Name>
 service,

 //...\Parameters - this is where you can put service-specific configuration
 config;

 try

 {

59 votes for this Article.

Popularity: 8.16 Rating: 4.61 out of 5

1

2

3

4

5

Page 1 of 3CodeProject: Adding a description to a .NET Windows Service. Free source cod...

08/21/2008http://www.codeproject.com/KB/dotnet/dotnetscmdescription.aspx?display=Print

 //Let the project installer do its job
 base.Install(stateServer);

 //Open the HKEY_LOCAL_MACHINE\SYSTEM key
 system = Microsoft.Win32.Registry.LocalMachine.OpenSubKey("System");

 //Open CurrentControlSet
 currentControlSet = system.OpenSubKey("CurrentControlSet");

 //Go to the services key
 services = currentControlSet.OpenSubKey("Services");

 //Open the key for your service, and allow writing
 service = services.OpenSubKey(this.serviceInstaller1.ServiceName, true);

 //Add your service's description as a REG_SZ value named "Description"
 service.SetValue("Description", "This is my service's description.");

 //(Optional) Add some custom information your service will use...
 config = service.CreateSubKey("Parameters");

 }

 catch(Exception e)

 {

 Console.WriteLine("An exception was thrown during service installation:\n" + e.ToString());

 }

}

public override void Uninstall(IDictionary stateServer)

{

 Microsoft.Win32.RegistryKey system,

 currentControlSet,

 services,

 service;

 try

 {

 //Drill down to the service key and open it with write permission
 system = Microsoft.Win32.Registry.LocalMachine.OpenSubKey("System");

 currentControlSet = system.OpenSubKey("CurrentControlSet");

 services = currentControlSet.OpenSubKey("Services");

 service = services.OpenSubKey(this.serviceInstaller1.ServiceName, true);

 //Delete any keys you created during installation (or that your service created)
 service.DeleteSubKeyTree("Parameters");

 //...
 }

 catch(Exception e)

 {

 Console.WriteLine("Exception encountered while uninstalling service:\n" + e.ToString());

 }

 finally

 {

 //Let the project installer do its job
 base.Uninstall(stateServer);

 }

}

After you add the above code to your ProjectInstaller class, you should see a description for your service

alongside your service's name after your service is installed. In a future article, we'll look at how we can

add the description as a custom attribute and extend the ServiceInstaller class to add the description for

us automatically.

License

This article has no explicit license attached to it but may contain usage terms in the article text or the

download files themselves. If in doubt please contact the author via the discussion board below.

A list of licenses authors might use can be found here

About the Author

Page 2 of 3CodeProject: Adding a description to a .NET Windows Service. Free source cod...

08/21/2008http://www.codeproject.com/KB/dotnet/dotnetscmdescription.aspx?display=Print

Discussions and Feedback

 45 messages have been posted for this article. Visit

http://www.codeproject.com/KB/dotnet/dotnetscmdescription.aspx to post and view

comments on this article, or click here to get a print view with messages.

Andy Hopper

Andy Hopper is a senior software engineer with DocuSys, a company that

supplies digital medical solutions. He primarily designs and implements multi-

tier backend architectures for Medical Informatics applications.

Classically trained as an electrical engineer, Andy rediscovered his long-lost

love with programming while working on a Master’s degree project and

changed careers in 1995 to become a self-taught software engineer. Andy

realized his time with VB and ATL were at an end when he received the .NET

Framework preview at the 2000 Professional Developer's Conference.

Andy has previously worked as a Resesarch Engineer at the Georgia Institute of

Technology, a Senior Software Engineer at CyberCare Technologies, and a Lead

Systems Architect for the American Cardiovascular Research Institute.

Flamebait: Andy thinks arrays should be 0-based.

Occupation: Web Developer

Location: United States

PermaLink | Privacy | Terms of Use

Last Updated: 6 Feb 2002

Editor: Chris Maunder

Copyright 2002 by Andy Hopper

Everything else Copyright © CodeProject, 1999-2008

Web07 | Advertise on the Code Project

Page 3 of 3CodeProject: Adding a description to a .NET Windows Service. Free source cod...

08/21/2008http://www.codeproject.com/KB/dotnet/dotnetscmdescription.aspx?display=Print

