
Database » Database » ADO.NET

.NET DataSet to ADODB Recordset

Conversion
By KRucker

A description of how how to convert a .NET DataSet to an ADODB Recordset.

VB, Windows, .NET, Visual Studio,

ASP.NET, ADO, ADO.NET, Dev

: 8 Mar 2006

: 8 Mar 2006

: 42,307

: 17 times

Posted

Updated

Views

Bookmarked

Download source files - 2.44 Kb

Contents

� Introduction

� Background

� Using the code

� Conclusion

� History

Introduction

I was tasked with implementing a .NET Web Service to provide access to our application data by

outside entities. The Web Service must support clients written in .NET languages, Visual Basic

6.0, and non-Microsoft languages. All access to our database must be through stored procedures,

so we did not need to support running direct SQL queries. The design was to use a single method

that accepts an XML string that describes the stored procedure to run, its parameters, and how

to return the data if any data is returned (DataSet XML or Recordset XML). The

implementation used the .NET data access objects to return a DataSet and ADODB objects to

return a Recordset. The returned data was then serialized to an XML string and returned to the

caller. At first, this worked like a charm, however, as soon as the load testing started, it was

obvious, I had a problem. At the web server, a single user returning a large set of data utilized

70% of the CPU; two simultaneous users pegged it at 100%, five or more users - some would

get timeouts! This was very bad!

I knew going in that there would be some performance penalty for using ADODB in the .NET

code, but I never dreamed it would be so pronounced. It seems that the penalty for using COM

interop from .NET can be quite severe. Back to the drawing board.

Now for the problem, I knew from the beginning that if I had to provide the XML node list that a

DataSet persists in a form, along with the XML schema, any .NET or non-Microsoft client should

easily be able to use to utilize the data, then the plan for returning persisted Recordset

formatted XML to VB 6.0 clients was in serious jeopardy. So far as I knew, there was no native

way to convert a DataSet to an ADODB Recordset in VB.NET. Knowing that someone,

somewhere was bound to have had this problem before me, I began to search the internet to see

13 votes for this Article.

Popularity: 4.81 Rating: 4.32 out of 5

1

2

3

4

5

Page 1 of 8CodeProject: .NET DataSet to ADODB Recordset Conversion. Free source cod...

08/14/2008http://www.codeproject.com/KB/database/ADOConversion.aspx?display=Print

if anyone had come up with a solution that I could use. I found a couple of articles that had VB

6.0 code that use the .NET node list and schema to construct an ADODB Recordset, but they

were client side solutions, I needed something that would work on the server. I found a Microsoft

Support article: How To Convert an ADO.NET DataSet to ADO Recordset in Visual Basic .NET,

that appeared to be exactly what I had been searching for.

I followed the instructions in the article, set up the code, and it worked! The only problem I had

now was that the example code from Microsoft was writing the XML to a file and reading an XSL

file. Since I need this to be a server solution, I needed to eliminate the file IO. No big deal, I

altered the code to generate the XSL on the fly in a string (it was quite small), and used a

MemoryStream to contain the XML instead of a file. I tried this out and it worked. Now I had to

test it against some real world data. I set up some test code to pull data from our test database,

and sent it through the conversion function to see what I get on the other side.

The first problem I saw was that the only fields getting a data type were integers and strings, for

all other fields the data type was blank. This was causing an error when attempting to load the

Recordset from the ADODB Stream. I tracked down where the code was determining the data

type, and sure enough, integers and strings were all they were trapping for. I added several data

types and a Case Else that set anything I was not specifically trapping, to type string. Thinking

this should work, I tried another run and still got an error loading the XML into the Recordset. I

commented out all of the fields returned in the stored procedure except one, ran again, and it

worked. I repeated this process, un-commenting another field each time, trying to figure out

what type of field I was having a problem with. It turned out to be date-time fields. After a bit of

research, I found that in the DataSet, the date-time format included time zone information. For

the Recordset to accept a date-time with this additional time zone information, the data type in

the XML must be set to dateTime.iso8601tz. I made this change, attempted another run, and

it worksed.

Now I wrapped the code in a class and integrated it into the Web Service and began unit testing.

I ran through a couple of calls, then hit another problem - binary fields. This one took a while to

research, but I found that binary fields in a DataSet are persisted as base64 encoded strings;

the ADODB Recordset expects binary fields to be persisted as binary hex encoded strings.

Since the Microsoft code for transforming the data portion of the DataSet is the part that uses

the XSL transformation, there was no opportunity to re-encode the data in a binary field. First, I

tried setting the data type in the XML to bin.base64. This allowed the Recordset to load the

data without an error, but, the binary data ended up stored in the Recordset as a string field

containing the base64 encoded string. In order to have the Recordset convert the field to

binary upon loading, as it should, it must be encoded in binary hex, and the data type in the XML

set to bin.hex. To solve this, I rewrote the transformation code to loop through the DataSet,

and added the data to the XML using the XmlTextWriter just like the rest of the code does to

add the header and schema information. This gave me the chance to detect binary fields and

binary hex encode them.

Now I needed to find or write a function to perform the binary hex encoding. I couldn't find any

ready-made code on the internet, but, I did find information on binary hex encoding. BinaryHex

encoding simply takes each octet (byte) of the binary stream, divides it into two 4 bit nibbles,

and places the hexadecimal character representing that nibbles value in the output string. For

example, if you have 32 bits of binary data:

10010010111100011010110011010100

divide into octets (bytes):

Page 2 of 8CodeProject: .NET DataSet to ADODB Recordset Conversion. Free source cod...

08/14/2008http://www.codeproject.com/KB/database/ADOConversion.aspx?display=Print

10010010 11110001 10101100 11010100

divide the octets into 4 bit nibbles:

1001 0010 1111 0001 1010 1100 1101 0100

decimal values of nibbles:

9 2 15 1 10 12 13 4

hexadecimal values:

9 2 F 1 A C D 4

encoded string representing the original 32 bit binary value:

"92F1ACD4

Armed with the above information, it was simple to write a small function to binary hex encode a

byte array and return the resultant string. I added this to the class, modified the data

transformation code to detect binary fields, and applied this new function to the data. Now I have

a conversion class that I can use. The only thing that you may need to update is the function

that determines the data type to put in the XML. If you need a data type that I'm not trapping,

returning it as a string is not sufficient, just add a Case statement for your data type to the

function.

Now, on to the code!

Background

Requirements:

� Microsoft Windows 2003, Windows XP, Windows 2000, or Windows NT 4.0 Service Pack 6a

� Microsoft Data Access Components (MDAC) 2.6 or later

� Microsoft Visual Studio .NET

This article assumes that you are familiar with the following topics:

� Microsoft Visual Basic .NET syntax

� ADO.NET and earlier versions of ADO

� DataSet and ADO Recordset XML formats

Using the code

It should be noted here that I started with the code in the above mentioned Microsoft Support

article. The code presented, however, is a substantial update of that code.

Page 3 of 8CodeProject: .NET DataSet to ADODB Recordset Conversion. Free source cod...

08/14/2008http://www.codeproject.com/KB/database/ADOConversion.aspx?display=Print

Note: You must call the FillSchema method of the DataAdapter to obtain the schema

information with your DataSet. If you do not, all fields will be created as a string data type.

The GetADORS function provides the entry point and logic flow for the class. It also creates the

MemoryStream and XmlTextReader used by the rest of the functions to build the output XML

string.

Public Function GetADORS(ByVal DS As DataSet, _
 ByVal dbName As String) As String

 Try
 'Create a MemoryStream to contain the XML
 Dim mStream As New MemoryStream
 'Create an XmlWriter object, to write
 'the formatted XML to the MemoryStream
 Dim xWriter As New XmlTextWriter(mStream, Nothing)

 'Additional formatting for XML
 xWriter.Indentation = 8
 xWriter.Formatting = Formatting.Indented
 'call this Sub to write the ADONamespaces
 WriteADONamespaces(xWriter)
 'call this Sub to write the ADO Recordset Schema
 WriteSchemaElement(DS, dbName, xWriter)
 'Call this sub to transform
 'the data portion of the Dataset
 TransformData(DS, xWriter)
 'Flush all input to XmlWriter
 xWriter.Flush()

 'Prepare the return value
 mStream.Position = 0
 Dim Buffer As Array
 Buffer = Array.CreateInstance(GetType(Byte), mStream.Length)
 mStream.Read(Buffer, 0, mStream.Length)
 Dim TextConverter As New UTF8Encoding
 Return TextConverter.GetString(Buffer)

 Catch ex As Exception
 'Returns error message to the calling function.
 Err.Raise(100, ex.Source, ex.ToString)
 End Try

End Function

First, I've added two lines that indicate to the XmlTextWriter that I want the XML to be

indented. The entire purpose of this is to make the output XML human readable. These lines can

be omitted if you like. Having the output XML easily readable made debugging the class much

easier. Next, WriteADONamespaces is called to add the Recordset schema to the output XML.

WriteSchemaElement is then called to add the schema elements. TransformData is called to

properly format the data and add it to the output XML. Finally, the contents of the

MemoryStream are prepared for return as a string.

Private Sub WriteADONamespaces(ByRef xWriter As XmlTextWriter)
 'Uncomment the following line to change
 'the encoding if special characters are required
 'writer.WriteProcessingInstruction("xml",
 ' "version='1.0' encoding='ISO-8859-1'")

 'Add XML start element

Page 4 of 8CodeProject: .NET DataSet to ADODB Recordset Conversion. Free source cod...

08/14/2008http://www.codeproject.com/KB/database/ADOConversion.aspx?display=Print

 xWriter.WriteStartElement("", "xml", "")

 'Append the ADO Recordset namespaces
 xWriter.WriteAttributeString("xmlns", "s", Nothing, _
 "uuid:BDC6E3F0-6DA3-11d1-A2A3-00AA00C14882")
 xWriter.WriteAttributeString("xmlns", "dt", Nothing, _
 "uuid:C2F41010-65B3-11d1-A29F-00AA00C14882")
 xWriter.WriteAttributeString("xmlns", "rs", Nothing, _
 "urn:schemas-microsoft-com:rowset")
 xWriter.WriteAttributeString("xmlns", "z", _
 Nothing, "#RowsetSchema")
 xWriter.Flush()
End Sub

The code in WriteADONamespaces is essentially unchanged from the code in the original

Microsoft article. I have removed the comment describing the format of this section of the XML.

Private Sub WriteSchemaElement(ByVal DS As DataSet, _
 ByVal dbName As String, ByRef xWriter As _
 XmlTextWriter)

 'write element Schema
 xWriter.WriteStartElement("s", "Schema", _
 "uuid:BDC6E3F0-6DA3-11d1-A2A3-00AA00C14882")
 xWriter.WriteAttributeString("id", "RowsetSchema")

 'write element ElementType
 xWriter.WriteStartElement("s", "ElementType", _
 "uuid:BDC6E3F0-6DA3-11d1-A2A3-00AA00C14882")

 'write the attributes for ElementType
 xWriter.WriteAttributeString("name", "", "row")
 xWriter.WriteAttributeString("content", "", "eltOnly")
 xWriter.WriteAttributeString("rs", "updatable", _
 "urn:schemas-microsoft-com:rowset", "true")

 WriteSchema(DS, dbName, xWriter)
 'write the end element for ElementType
 xWriter.WriteFullEndElement()

 'write the end element for Schema
 xWriter.WriteFullEndElement()
 xWriter.Flush()
End Sub

The code in WriteSchemaElement, also, is essentially unchanged from the code in the original

Microsoft article. I have removed the comment describing the format of this section of the XML.

Private Sub WriteSchema(ByVal DS As DataSet, ByVal dbName _
 As String, ByRef xWriter As XmlTextWriter)

 Dim i As Int32 = 1
 Dim DC As DataColumn

 For Each DC In DS.Tables(0).Columns

 DC.ColumnMapping = MappingType.Attribute

 xWriter.WriteStartElement("s", "AttributeType", _
 "uuid:BDC6E3F0-6DA3-11d1-A2A3-00AA00C14882")
 'write all the attributes

Page 5 of 8CodeProject: .NET DataSet to ADODB Recordset Conversion. Free source cod...

08/14/2008http://www.codeproject.com/KB/database/ADOConversion.aspx?display=Print

 xWriter.WriteAttributeString("name", "", DC.ToString)
 xWriter.WriteAttributeString("rs", "number", _
 "urn:schemas-microsoft-com:rowset", i.ToString)
 xWriter.WriteAttributeString("rs", "baseCatalog", _
 "urn:schemas-microsoft-com:rowset", dbName)
 xWriter.WriteAttributeString("rs", "baseTable", _
 "urn:schemas-microsoft-com:rowset", _
 DC.Table.TableName.ToString)
 xWriter.WriteAttributeString("rs", "keycolumn", _
 "urn:schemas-microsoft-com:rowset", _
 DC.Unique.ToString)
 xWriter.WriteAttributeString("rs", "autoincrement", _
 "urn:schemas-microsoft-com:rowset", _
 DC.AutoIncrement.ToString)
 'write child element
 xWriter.WriteStartElement("s", "datatype", _
 "uuid:BDC6E3F0-6DA3-11d1-A2A3-00AA00C14882")
 'write attributes
 xWriter.WriteAttributeString("dt", "type", _
 "uuid:C2F41010-65B3-11d1-A29F-00AA00C14882", _
 GetDatatype(DC.DataType.ToString))
 xWriter.WriteAttributeString("dt", "maxlength", _
 "uuid:C2F41010-65B3-11d1-A29F-00AA00C14882", _
 DC.MaxLength.ToString)
 xWriter.WriteAttributeString("rs", "maybenull", _
 "urn:schemas-microsoft-com:rowset", _
 DC.AllowDBNull.ToString)
 'write end element for datatype
 xWriter.WriteEndElement()
 'end element for AttributeType
 xWriter.WriteEndElement()
 xWriter.Flush()
 i = i + 1
 Next
 DC = Nothing

End Sub

The code in WriteSchema, also, is essentially unchanged from the code in the original Microsoft

article. I have removed the comment describing the format of this section of the XML.

Private Function GetDatatype(ByVal DType As String) As String
 Select Case (DType)
 Case "System.Int32", "System.Int16", "System.Integer"
 Return "int"
 Case "System.DateTime"
 Return "dateTime.iso8601tz"
 Case "System.String"
 Return "string"
 Case "System.Byte[]"
 Return "bin.hex"
 Case "System.Boolean"
 Return "boolean"
 Case "System.Guid"
 Return "guid"
 Case Else
 Return "string"
 End Select
End Function

The GetDatatype function has been expanded to handle more data types than the original

function. The original function only recognized System.Int32 and System.DateTime. The

Page 6 of 8CodeProject: .NET DataSet to ADODB Recordset Conversion. Free source cod...

08/14/2008http://www.codeproject.com/KB/database/ADOConversion.aspx?display=Print

Case Else has also been added to return string type for all data types not in the Case

statement.

Private Sub TransformData(ByVal DS As DataSet, _
 ByRef xWriter As XmlTextWriter)

 'Loop through DataSet and add data to XML
 xWriter.WriteStartElement("", "rs:data", "")
 Dim i As Long
 Dim j As Integer
 'For each row...
 For i = 0 To DS.Tables(0).Rows.Count - 1
 'Write the start element for the row
 xWriter.WriteStartElement("", "z:row", "")
 'For each field in the row...
 For j = 0 To DS.Tables(0).Columns.Count - 1
 'Write the attribute that describes
 'this field and it's value
 If DS.Tables(0).Columns(j).DataType.ToString_
 = "System.Byte[]" Then
 'Binary data must be properly encoded (bin.hex)
 If Not IsDBNull(DS.Tables(0).Rows(i).Item(
 DS.Tables(0).Columns(j).ColumnName)) Then
 xWriter.WriteAttributeString(DS.Tables(0).
 Columns(j).ColumnName, _
 DataToBinHex(DS.Tables(0).Rows(i).Item(
 DS.Tables(0).Columns(j).ColumnName)))
 End If
 Else
 If Not IsDBNull(DS.Tables(0).Rows(i).Item(
 DS.Tables(0).Columns(j).ColumnName)) Then
 xWriter.WriteAttributeString(
 DS.Tables(0).Columns(j).ColumnName, _
 CType(_
 DS.Tables(0).Rows(i).Item(DS.Tables(0).
 Columns(j).ColumnName), String))
 End If
 End If
 Next
 'End the row element
 xWriter.WriteEndElement()
 Next
 'Write the end element for rs:data
 xWriter.WriteEndElement()
 'Write the end element for xml
 xWriter.WriteEndElement()
 xWriter.Flush()

End Sub

TransformData adds the "rs:data" section of the XML. The function loops through the DataSet

adding "z:row" elements for each data row. This function also adds the end tag for the root

(XML) element.

Private Function DataToBinHex(ByVal thisData As Byte()) As String
 Dim sb As New StringBuilder
 Dim i As Integer = 0
 For i = 0 To thisData.Length - 1
 'First nibble of byte (4 most significant bits)
 sb.Append(Hex((thisData(i) And &HF0) / 2 ^ 4))
 'Second nibble of byte (4 least significant bits)
 sb.Append(Hex(thisData(i) And &HF))

Page 7 of 8CodeProject: .NET DataSet to ADODB Recordset Conversion. Free source cod...

08/14/2008http://www.codeproject.com/KB/database/ADOConversion.aspx?display=Print

 Next
 Return sb.ToString
End Function

The DataToBinHex function performs the encoding of binary data.

Conclusion

As long as developers are faced with integrating .NET and VB 6.0, there will be a need to have

the ability to pass data from one to the other. In the case where VB 6.0 is the client, the code

presented here should help to alleviate the problem. While the code in the Microsoft article was a

good starting point, it has a few shortcomings that prevent it from operating correctly in many

real world situations. I believe that I have addressed the major concerns and shortfalls, and am

presenting code that can be dropped into a project and used "as is" in most situations.

History

� Original submission - 03/08/2006.

License

This article has no explicit license attached to it but may contain usage terms in the article text

or the download files themselves. If in doubt please contact the author via the discussion board

below.

A list of licenses authors might use can be found here

About the Author

Discussions and Feedback

 15 messages have been posted for this article. Visit

http://www.codeproject.com/KB/database/ADOConversion.aspx to post and view

comments on this article, or click here to get a print view with messages.

KRucker

Location: United States

PermaLink | Privacy | Terms of Use

Last Updated: 8 Mar 2006

Editor: Smitha Vijayan

Copyright 2006 by KRucker

Everything else Copyright © CodeProject, 1999-2008

Web12 | Advertise on the Code Project

Page 8 of 8CodeProject: .NET DataSet to ADODB Recordset Conversion. Free source cod...

08/14/2008http://www.codeproject.com/KB/database/ADOConversion.aspx?display=Print

